Dr. Mitchell Albert is a pioneer and leader in the field of hyperpolarized (HP) and fluorinated gas magnetic resonance imaging (MRI). He has a long list of publications, some of which are featured here.


  1. Shepelytskyi Y., et. al. Hyperpolarized 129Xe Time-of-Flight MR Imaging of Perfusion and Brain Function. Diagnostics 2020, 10(9):630.
  2. Shepelytskyi Y., et. al. Evaluation of Fluorine-19 Magnetic Resonance Imaging of the Lungs Using Octafluorocyclobutane in a Rat Model. Magn. Reson. Med. 2020, 00:1-8.
  3. Yeo S., et. al. Molecular Imaging of Fluorinated Probes for Tau Protein and Amyloid-β Detection. Molecules 2020, 25(15):3413.
  4. Fernando AI, Shepelytskyi Y., Cesana PT, Wade A, Grynko V, Mendieta AM, Seveney LE, Brown JD, Hane FT, Albert MS, DeBoef B. Decacationic Pillar[5]arene: A New Scaffold for the Development of 129Xe MRI Imaging Agents. ACS Omega 2020.


  1. Shepelytskyi Y., et al. In-VivoRetention of 5-Fluorouracil Using 19F Magnetic Resonance Chemical Shift Imaging in Colorectal Cancer in a Murine Model. Sci. Rep. 2019;9:13244.
  2. Couch MJ., et al. 19F MRI of the Lungs Using Inert Fluorinated Gases: Challenging and New Developments.J Magn Reson Imaging. 2019; 49(2): 343-354.


  1. Hane, FT., et. al. Inhaled Xenon Washout as a Biomarker of Alzheimer’s Disease.Diagnostics (Basel). 2018; 8(2).
  2. Hane, FT., et. al. Cyclodextrin-Based Pseudorotaxanes: Easily Conjugatable Scaffolds for Synthesizing Hyperpolarized Xenon-129 Magnetic Resonance Imaging Agents. ACS Omega. 2018; 3(1):677-681.


  1. Hane, FT. et. al. Recent Progress in Alzheimer’s Disease Research, Part 3: Diagnosis and Treatment. J Alzheimers Dis. 2017; 57(3):645-665.
  2. Hane, FT., et. al. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor. Sci Rep. 2017; 7:41027.


  1. Hane, FT., et. al. HyperCEST detection of cucurbit[6]uril in whole blood using ultrashort saturation Pre-pulse train.Contrast Media Mol Imaging. 2016;11(4):285-90.
  2. Couch, MJ., et. al. Fractional ventilation mapping using inert fluorinated gas MRI in rat models of inflammation and fibrosis. NMR in Biomed. 2016;29(5):545-52.


  1. Walvick, R.P., et al., Evaluation of oxygen sensitivity of hyperpolarized helium imaging for the detection of pulmonary ischemia.Magnetic resonance in medicine, 2015.
  2. Lui, J.K., et al., Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness.PloS one, 2015. 10(11).
  3. Kruger, S.J., et al., Functional imaging of the lungs with gas agents.Journal of Magnetic Resonance Imaging, 2015.
  4. Couch, M.J., et al., Hyperpolarized and Inert Gas MRI: The Future.Molecular Imaging and Biology, 2015. 17(2): p. 149-162.
  5. Ball, I., et al., Can Inert Fluorinated Gas Mri Provide Meaningful Functional Lung Information Similar To Hyperpolarized 3he Mri?
  6. Albert, M.S., Magnetic Resonance Imaging of the Brain using Hyperpolarized 129Xe.Hyperpolarized Xenon-129 Magnetic Resonance: Concepts, Production, Techniques and Applications, 2015. 4: p. 407.


Add publications here.

Website Design & Development by CryoDragon Inc.