Publications

Dr. Mitchell Albert is a pioneer and leader in the field of hyperpolarized (HP) and fluorinated gas magnetic resonance imaging (MRI). He has a long list of publications, some of which are featured here.

2022

  1. Shepelytskyi Y., Grynko V., Rao MR., Li T., Agostino M., Wild JM., Albert MS. Hyperpolarized 129Xe imaging of the brain: Achievements and Future Challenges. Magn. Reson. Med. 2022;88(1):83-105.https://doi.org/10.1002/mrm.29200
  2. Matheson AM., McIntosh MJ., Kooner HK., et. al. Persistent 129Xe MRI Pulmonary and CT Vascular Abnormalities in Symptomatic Individuals with Post-Acute COVID-19 Syndrome. Radiology. 2022. https://doi.org/10.1148/radiol.220492
  3. Kooner HK., McIntosh MJ., Matheson AM., et al. 129Xe MRI ventilation defects in ever-hospitalised and never-hospitalised people with post-acute COVID-19 syndrome. BMJ Open Respir. Res. 2022;9(1):e001235. https://doi.org/10.1136/bmjresp-2022-001235

2021

  1. Shepelytskyi Y., et. al. Photoinduced nonlinear magnetoelectric effect detection in Zn2Y hexaferrite. Appl. Phys. Lett. 2021; 119(6):062401. https://doi.org/10.1063/5.0050808.
  2. Shepelytskyi Y., et al. The effects of an initial depolarization pulse on dissolved phase hyperpolarized 129Xe brain MRI. Magn. Reson. Med. 2021;86(6):3147-3155. https://doi.org/10.1002/mrm.28918.
  3. Grynko V., et. al. Hyperpolarized 129Xe multi-slice imaging of the human brain using a 3D gradient echo pulse sequence. Magn. Reson. Med. 2021; 86(6):3175-3181. https://doi.org/10.1002/mrm.28932.

2020

  1. Shepelytskyi Y., et. al. Hyperpolarized 129Xe Time-of-Flight MR Imaging of Perfusion and Brain Function. Diagnostics. 2020, 10(9):630. https://doi.org/10.3390/diagnostics10090630.
  2. Shepelytskyi Y., et. al. Evaluation of Fluorine-19 Magnetic Resonance Imaging of the Lungs Using Octafluorocyclobutane in a Rat Model. Magn. Reson. Med. 2021, 85(2):987-994. https://doi.org/10.1002/mrm.28473.
  3. Yeo S., et. al. Molecular Imaging of Fluorinated Probes for Tau Protein and Amyloid-β Detection. Molecules. 2020, 25(15):3413. https://doi.org/10.3390/molecules25153413.
  4. Fernando AI, Shepelytskyi Y., Cesana PT, Wade A, Grynko V, Mendieta AM, Seveney LE, Brown JD, Hane FT, Albert MS, DeBoef B. Decacationic Pillar[5]arene: A New Scaffold for the Development of 129Xe MRI Imaging Agents. ACS Omega. 2020, 43(5): 27783-27788. https://dx.doi.org/10.1021/acsomega.0c02565
  5. Shepelytskyi Y., et. al. Cyclodextrin-Based Contrast Agents for Medical Imaging. Molecules. 2020, 25(23): 5576. https://doi.org/10.3390/molecules25235576

2019

  1. Shepelytskyi Y., et al. In-VivoRetention of 5-Fluorouracil Using 19F Magnetic Resonance Chemical Shift Imaging in Colorectal Cancer in a Murine Model. Sci. Rep. 2019;9:13244. https://doi.org/10.1038/s41598-019-49716-7
  2. Couch MJ., et al. 19F MRI of the Lungs Using Inert Fluorinated Gases: Challenging and New Developments. J Magn Reson Imaging. 2019; 49(2): 343-354. https://doi.org/10.1002/jmri.26292

2018

  1. Hane, FT., et. al. Inhaled Xenon Washout as a Biomarker of Alzheimer’s Disease. Diagnostics (Basel). 2018; 8(2). https://doi.org/10.3390/diagnostics8020041
  2. Hane, FT., et. al. Cyclodextrin-Based Pseudorotaxanes: Easily Conjugatable Scaffolds for Synthesizing Hyperpolarized Xenon-129 Magnetic Resonance Imaging Agents. ACS Omega. 2018; 3(1):677-681. https://doi.org/10.1021/acsomega.7b01744

2017

  1. Hane, FT. et. al. Recent Progress in Alzheimer’s Disease Research, Part 3: Diagnosis and Treatment. J Alzheimers Dis. 2017; 57(3):645-665. https://doi.org/10.3233/JAD-160907
  2. Hane, FT., et. al. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor. Sci Rep. 2017; 7:41027. https://doi.org/10.1038/srep41027

2016

  1. Hane, FT., et. al. HyperCEST detection of cucurbit[6]uril in whole blood using ultrashort saturation Pre-pulse train.Contrast Media Mol Imaging. 2016;11(4):285-90. https://doi.org/10.1002/cmmi.1690
  2. Couch, MJ., et. al. Fractional ventilation mapping using inert fluorinated gas MRI in rat models of inflammation and fibrosis. NMR in Biomed. 2016;29(5):545-52. https://doi.org/10.1002/nbm.3493

2015

  1. Walvick, R.P., et al., Evaluation of oxygen sensitivity of hyperpolarized helium imaging for the detection of pulmonary ischemia.Magnetic resonance in medicine, 2015. https://doi.org/10.1002/mrm.25714
  2. Lui, J.K., et al., Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness.PloS one, 2015. 10(11). https://doi.org/10.1371/journal.pone.0142738
  3. Kruger, S.J., et al., Functional imaging of the lungs with gas agents.Journal of Magnetic Resonance Imaging, 2015. https://doi.org/10.1002/jmri.25002
  4. Couch, M.J., et al., Hyperpolarized and Inert Gas MRI: The Future.Molecular Imaging and Biology, 2015. 17(2): p. 149-162. https://doi.org/10.1007/s11307-014-0788-2
  5. Ball, I., et al., Can Inert Fluorinated Gas Mri Provide Meaningful Functional Lung Information Similar To Hyperpolarized 3he Mri?
  6. Albert, M.S., Magnetic Resonance Imaging of the Brain using Hyperpolarized 129Xe.Hyperpolarized Xenon-129 Magnetic Resonance: Concepts, Production, Techniques and Applications, 2015. 4: p. 407. https://doi.org/10.1039/9781782628378-00407

Website Design & Development by CryoDragon Inc.